Journal of Organometallic Chemistry, 264 (1984) 193-206 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

POLYGERMANES PRECURSEURS D'ESPECES DU GERMANIUM A COORDINANCE NON USUELLE

P. RIVIERE*, A. CASTEL, J. SATGÉ* et D. GUYOT

Laboratoire de Chimie des Organominéraux (ERA du CNRS No. 829) Université Paul Sabatier, 31062 Toulouse Cedex (France)

(Reçu le 29 juillet 1983)

Summary

Several thermal or photochemical α -elimination reactions of functional polygermanes lead to germylenes, R₂Ge. Photolysis of polygermanes, cyclopolygermanes and polygermylmercury compounds and also hydrogen abstraction from various organohydropolygermanes using t-BuO; lead to the formation of polymetallated chains containing one or two germanium-centered radicals.

These polygermyl radicals give germylenes, R_2Ge , germanium centered radicals \Rightarrow Ge; α -digermyl diradicals (or digermenes) [>Ge-Ge< or >Ge=Ge<] and β - or γ -polygermyl diradicals via a homolytic monoelectronic α -elimination process. In some cases the formation of α -digermyl diradicals or digermenes can also be seen as occurring through dimerization of germylenes but with lower yields. All these intermediates have been characterized by several trapping reactions with dimethyl disulfide, 2,3-dimethylbutadiene or biacetyl.

Résumé

Divers types de réactions d' α -élimination thermo- ou photo-induites dans des polygermanes fonctionnels permettent d'accéder aux germylènes R₂Ge.

La photolyse de polygermanes, cyclopolygermanes ou de polygermylmercures, ainsi que les réactions d'abstraction d'hydrogène par t-BuO dans divers organohydropolygermanes conduisent à la formation de chaînes polymétallées présentant un ou deux centres radicalaires centrométallés.

Il a pu être établi que ces polygermylradicaux permettent d'obtenir des germylènes, R_2Ge , des radicaux centrogermaniés $\Rightarrow Ge$; des α -digermylbiradicaux ou digermènes $\Rightarrow Ge-Ge < qu \Rightarrow Ge=Ge < et des \beta$, γ polygermylbiradicaux suivant un mécanisme d' α -élimination monoélectronique. La formation d' α -germylbiradicaux ou digermènes peut être aussi envisagée dans certains cas par duplication de germylènes

Mémoire dédié à Monsieur le Doyen Raymond Calas, à l'occasion de son 70e anniversaire en témoignage de notre profonde gratitude.

mais avec de plus faibles rendements. Toutes ces espèces intermédiaires ont pu être caractérisées dans diverses réactions de "piégeage" avec le diméthyldisulfure, le diméthylbutadiène ou le diacétyle.

Introduction

Les germylènes, espèces divalentes du germanium, comparables aux carbènes, sont principalement obtenus à l'état fondamental singulet [1-3]. Ils peuvent être isolés sous forme monomère lorsqu'ils présentent des groupements à effets stéréoélectroniques déterminants (A) [2,3], sous forme stabilisée par associations intermoléculaires (B) [1,2] ou par complexation par des bases de Lewis (C) [1,2]. Les dialkyl- ou diarylgermylènes R₂Ge non complexés n'étant généralement isolés que sous leur forme polymère (R₂Ge)_n [1,2].

Dans ce mémoire, nous envisageons l'étude de la réactivité de germylènes R₂Ge non stabilisés. Comme cela a pu être observé dans le cas de silylènes [4], une duplication de ces espèces divalentes pourrait être induite à l'état triplet pour conduire à des α -biradicaux, forme limite de digermène >Ge=Ge \langle [5]. Ceux-ci sont également accessibles par diverses réactions de photolyse et d'élimination à partir de composés digermaniés à liaison germanium-mercure [6] ou de cyclopolygermanes [7].

Notre choix au niveau des agents de piégeage de ces espèces transitoires s'est orienté vers le diméthyldisulfure (réactif vis-à-vis des radicaux \geq Ge^{*}), du diméthylbutadiène (cycloaddition sur \geq Ge=Ge \leq) et du diacétyle.

Réactions d'a-élimination photo-induites

La décomposition thermo-induite de divers polygermanes fonctionnels constitue une voie d'accès générale à des germylènes diversement substitués. Ces réactions, fortement dépendantes de la nucléophilie de X et de la dissymétrie de la molécule, peuvent être dans certains cas observées dès la température ambiante et un mécanisme impliquant l'attaque nucléophile de X sur le germanium voisin a été établi [1,2].

Nous avons observé que ces mêmes α -éliminations pouvaient être induites photochimiquement (éq. 1). L'amorce du processus d' α -élimination ainsi obtenu conduit à la formation d'un germylène vraisemblablement à l'état excité.

Les germylènes mixtes (B) produits à l'aide de ces réactions ont été partiellement piégés par cycloaddition sur le diméthylbutadiène (DMB). Il faut noter cependant par comparaison à la même réaction effectuée sous initiation thermique, une baisse de rendement en germacyclopentène trouvant sa justification dans les réactions compétitives d'oxydo-réduction photochimique du germylène (RGeX) (éq. 2b) [9] ou de duplication puis polymérisation de ce dernier (éq. 2c) conduisant à des chloropolygermanes peu stables difficiles à caractériser.

Les dialkyl-ou diarylgermylènes formés selon la réaction 1 montrent, comparativement aux halogénogermylènes mixtes (**B**), une plus faible réactivité vis-à-vis du DMB et ont été piégés par insertion dans le diméthyldisulfure (eq. 3) [10].

$$2 R_{2}Ge \frac{CH_{3}SSCH_{3}}{h\nu(a)} R_{2}Ge(SMe)_{2} + R_{2}MeSGeGeSMeR_{2}$$
(3)

$$CH_{3}SH = Et_{3}N = E$$

Une faible quantité de R_2 MeSGeGeSMe R_2 est mise en évidence. Sa formation pourrait s'expliquer par une duplication partielle du germylène en biradical intermédiaire R_2 Ge-GeR₂ ou par insertion du germylène à l'état excité dans la liaison germanium-soufre de R_2 Ge(SMe)₂. Il faut noter cependant que la réaction d'insertion de R_2 Ge,NEt₃ sur R_2 Ge(SMe)₂ n'est pas observée sous simple chauffage et que ce mélange irradié longuement sous UV ne conduit à aucune trace de R_2 MeSGeGeSMeR₂.

Ces mêmes digermanes fonctionnels ont pu être préparés également par substitutions nucléophiles à partir des organodihalogéno-1,2 digermanes correspondants (eq. 3b et 3c). Au cours des réactions 3c (pour R = aryl) a été observé un processus parallèle d' α -élimination induite chimiquement (CH₃S⁻) dont l'étude sera développée dans un prochain mémoire.

La photolyse du trigermane $(Ph_3Ge)_2GeClPh$ a permis de mettre en évidence la formation de germylgermylène Ph_3Ge -GePh (éq. 4a) par α -élimination photo-induite. En outre, dans cette réaction, l'hexaphényldigermane provient d'une réaction d' α -élimination monoélectronique (cf. ci-après) issue de la photolyse initiale d'une liaison Ge-Ge dans ce trigermane (éq. 4b).

Dans toutes ces réactions utilisant le diméthyldisulfure comme agent de piégeage des radicaux centrogermaniés intermédiaires, nous avons vérifié (cf. partie expérimentale) que la liaison Ge-Ge dans les polygermanes se montre inactive vis-à-vis de ce réactif ou des radicaux CH₃S⁻qui peuvent en provenir.

Ces résultats montrent que dans tous les cas envisagés (di- et trigermanes fonctionnels), la réaction d' α -élimination photo-induite se montre largement prépondérante, comparativement à la photolyse beaucoup plus lente de la liaison Ge-Ge.

Réactions d' α -élimination monoélectroniques (α -E.m)

Contrairement aux digermanes fonctionnels précédemment étudiés, les hydropolygermanes ne subissent généralement pas d' α -élimination thermo- ou photo-induites dans les mêmes conditions expérimentales, du fait du faible caractère hydrure de l'hydrogène du groupement Ge-H. Nous avons essayé de vérifier l'hypothèse émise précédemment, de réactions d' α -E.m à partir de chaînes polygermaniées présentant un centre métallé radicalaire en bout de chaîne (eq. 5).

Dans le cas 5a, nous avons observé l'insertion progressive du diéthylgermylène naissant dans les liaisons germanium-chlore à partir de $Et_2ClGeGeClEt_2$ avec formation de polygermanes supérieurs: $Et_2ClGe(GeEt_2)_nGeClEt_2$ (n = 1, 2, 3) [8].

Les radicaux centrogermaniés issus d'hydrotrigermanes subissent des α -E.m. successives (éq. 6).

(*n* = 1,2)

La duplication minoritaire des chaînes polygermaniées à centre radicalaire (eq. 6c) peut être observée en cours de réaction tant que la concentration en Et_2Ge reste faible (cf. partie expérimentale).

Soulignons que dans le cas des modèles choisis, la photolyse Ge-Ge demeure négligeable et que dans le cas des hydropolygermanes étudiés, $Et_3GeGeHEt_2$, $Et_2HGe(GeEt_2)_nGeClEt_2$ (n = 0, 1) l' α -élimination photo-induite (réaction 1) se montre beaucoup plus lente comparativement à l' α -E.m et n'entre que très peu en compétition avec cette dernière (cf. partie expérimentale).

Réactions de photolyse de polygermylmercures

Il a été montré que les ruptures homolytiques successives mais quasi-simultanées des liaisons germanium-mercure dans les dérivés du type $[R(X)Ge-Hg]_n$ conduisent suivant un processus intramoléculaire largement prépondérant, à la formation de germylène R(X)Ge; piégés avec un excellent rendement sur le DMB (R = Ph, X = Cl 88%) [6]. Ce résultat peut s'expliquer à partir du mécanisme d' α -élimination monoélectronique mis en évidence dans ce mémoire (éq. 7).

Un processus identique conduit, à partir des digermylmercures, à la formation d'une espèce intermédiaire digermaniée très réactive et polymérisable ($R_2Ge-GeR_2$ ou $R_2Ge=GeR_2$) pouvant être condensée avec le diacétyle (R = Ph) [5], le diméthylbutadiène (R = Et [11] et R = Ph) et le diméthyldisulfure (R = Ph et R = Et) (éq. 8).

Dans la réaction 8, une β -élimination monoélectronique au niveau du radical centrogermanié I permet d'expliquer la quasi-simultanéité des ruptures des liaisons Ge-Hg (voie a). Elle serait favorisée par l'aptitude des liaisons germanium-mercure à subir une rupture homolytique [6,12]. L'hypothèse d'un enchaînement d' α -E

monoélectroniques (voie b) conduisant à un germylène excité susceptible de se dimériser, ne peut être totalement écartée, mais apparaît cependant moins probable du fait du faible rendement de ces dimérisations en phase condensée (cf. précédemment).

Réaction de photolyse de cyclopolygermanes

Le mécanisme d' α -E.m mis en évidence dans ce mémoire, permet de prévoir que les chaînes polygermaniées présentant deux centres radicalaires centrogermaniées pourraient être de bons générateurs de polygermylbiradicaux et en particulier d' α -digermylbiradicaux ou germènes ($\bigcirc Ge-Ge \le t \ge Ge=Ge \le t$).

Ainsi, la photolyse de cyclopolygermanes $(R_2Ge)_n$ (R = Et, n = 4, 5) conduit bien par α -E.m successives et expulsion de germylènes R_2Ge à divers biradicaux centrogermaniés qui ont été piégés sur le diméthyldisulfure.

Un résultat similaire est obtenu à partir du cyclopentagermane dont la photolyse est cependant plus lente.

Rappelons que la photolyse de l'hexakis(diméthyl-2,6 phényl)cyclotrigermane stabilisé par l'encombrement stérique de ses substituants conduit vraisemblablement, suivant le mécanisme proposé ci-dessus, à la formation de tétraxylyldigermène caractérisé par UV et piégé par addition sur le méthanol [7].

Conclusion

Les divers types de réactions d' α -élimination (thermo- ou photo-induites, induites chimiquement par divers nucléophiles et monoélectroniques), permettent d'accéder aux espèces divalentes du germanium. Le piégeage des intermédiaires digermaniés (>Ge-Ge \leq ou >Ge=Ge \leq) qui pourraient provenir de la duplication de ces germylènes à l'état excité est observée mais avec un très faible rendement. Ces mêmes intermédiaires digermaniés peuvent par contre être caractérisés avec de meilleurs rendements dans la photolyse de polyorganodigermylmercures et de cyclopolygermanes.

Un mécanisme d' α -élimination monoélectronique a pu être mis en évidence dans ces dernières réactions de photodécomposition.

Partie expérimentale

TABLEAU 1

Les composés décrits dans ce mémoire ont été caractérisés à l'aide des techniques et analyses usuelles: CPV (Varian Aerograph 1400 SE 30), RMN (EM 360A Varian); IR (Perkin-Elmer 457). Les spectres de masse ont été enregistrés sur appareil Varian MAT 311 (impact électronique). Les analyses élémentaires ont été réalisées par le service central de microanalyse du CNRS. Les irradiations UV ont été effectuées dans un appareillage en quartz à l'aide d'un réacteur photochimique Rayonet (λ 2537 Å). Les spectres UV ont été réalisés sur un spectrophotomètre Jobin Yvon 201, solvant cyclohexane, dans des cellules de quartz de 1 cm d'épaisseur.

Réactions d'a-élimination thermo- ou photo-induites

Deux modes opératoires ont été utilisés: le mélange réactionnel est chauffé en tube scellé, et le mélange réactionnel est introduit dans un tube de quartz puis irradié.

Dans les deux cas, le réactif de piégeage (diméthylbutadiène ou diméthyldisulfure) est utilisé en large excès.

Après concentration sous pression réduite, le résidu est analysé par RMN et CPV (Cf. Tableaux 1 et 2).

Les synthèses de certains composés étudiés ont déjà été décrites: Ph₂GeSMe [13],

REACTIONS D'a-ELIMINATION SOUS EFFET THERMIQUE									
Réactifs	<i>T</i> (°C)	Durée (h)	% "	Produits identifiés (%) ^b					
Ph ₃ GeGeCl ₂ Ph/DMB	150	5	100	$\frac{\text{PhGeCl}_3 (5), \text{Ph}_3\text{GeCl} (58), \text{Ph}_3\text{GeH} (4),}{\text{Ph(Cl)GeCH}_2\text{CCH}_3\text{CCH}_3\text{CH}_2 (33)}$					
PhCl ₂ GeGeCl ₂ Ph/DMB	120	24	80	$\frac{PhGeCl_{3} (76), Ph(Cl)GeCH_{2}CCH_{3}}{CCH_{3}CH_{2} (70) [1]}$					
Ph ₂ ClGeGeClPh ₂ /DMB	130	4	60	$\frac{Ph_2GeCl_2 (53)}{Ph_2GeCH_2CCH_3CCH_3CH_2}$ (18)					
Ph ₂ ClGeGeClPh ₂ /CH ₃ SSCH ₃	200	4	100	Ph_2GeCl_2 (7), $Ph_2ClGeSMe$ (89), $Ph_2Ge(SMe)_2$ (11)					
Ph2MeSGeGeSMePh2/DMB	130	8	90	$\frac{Ph_{2}Ge(SMe)_{2} (87)}{CCH_{3}CH_{2} (10)}, Ph_{2}GeCH_{2}CCH_{3}-$					
Ph3GeGeSMePh2/CH3SSCH3	200	4	42	Ph_3GeSMe (27), $Ph_2Ge(SMe)_2$ (22)					
Ph ₃ GeGeClPh ₂ /DMB	200	6	~ 10	Ph_3GeCl (7), $Ph_2GeCH_2CCH_3CCH_3CH_2$ (traces)					
Ph3Ge(PhGeCl)GePh3/DMB	150	6	40	PhGeCl ₃ (traces), Ph ₃ GeCl (37), Ph ₃ Ge(Ph)GeCH ₂ CCH ₃ CCH ₃ CH ₂ (6)					

^a % de décomposition du polygermane initial. ^b On note également dans ces réactions, la formation de polymères.

TABLEAU 2

	RE/	4	CT	101	VS.	D'	a-EI	.IN	4IN	ΙA	TI	ON	PH	ΟΤ	Ò	CHI	M	O	UE	ES
--	-----	---	----	-----	-----	----	------	-----	-----	----	----	----	----	----	---	-----	---	---	----	----

Réactifs	Durée (h) % "	Produits identifiés (%) ^b
Ph ₃ GeGeCl ₂ Ph/DMB	4 40	PhGeCl ₃ (7), Ph ₃ GeCl (25), Ph ₃ GeH (2), Ph ₂ GeCl ₂ (3), Ph ₃ GeGePh ₃ (5), PhClGeCH ₂ CCH ₃ CCH ₃ CH ₂ (6)
PhCl ₂ GeGeCl ₂ Ph/DMB	4 80	PhGeCl ₃ (69), PhClGeCH ₂ CCH ₃ CCH ₃ CH ₂ (15)
Ph ₂ ClGeGeClPh ₂ /DMB	4 40	$\frac{Ph_2GeCl_2}{CCH_3CH_2}$ (38), Ph_3GeCl (6), Ph_2GeCH_2CCH_3- CCH_3CH_2 (traces)
Ph2MeSGeGeSMePh2/DMB	4 30	$Ph_2Ge(SMe)_2$ (30)
Ph ₃ GeGeSMePh ₂ /CH ₃ SSCH ₃	3 55	$Ph_{3}GeSMe$ (22), $Ph_{2}Ge(SMe)_{2}$ (35), $Ph_{2}MeSGeGeSMePh_{2}$ (3-5)
Ph ₃ GeGeClPh ₂ /DMB	8 ~10	Ph_3GeCl (8), Ph_4Ge (traces)
Ph ₃ GeGeSMeEt ₂ /CH ₃ SSCH ₃	12 90	Ph_3GeSMe (41), $Et_2Ge(SMe)_2$ (13), Et_3GeSMe (traces), $Et_2MeSGeGeSMeEt_2$ (6)
Ph ₃ Ge(PhGeCl)GePh ₃ /DMB	5 27	PhGeCl ₃ (9), Ph ₃ GeCl (19), Ph ₃ GeGePh ₃ (4), PhClGeCH ₂ <u>CCH₃CCH₃CH</u> ₂ (3), Ph ₃ Ge(Ph)GeCH ₂ CHCHCH ₂ (4)

^a (%) de décomposition du polygermane initial. ^b On note également, dans ces réactions, la formation de polymères. En série phénylée, la plupart des irradiations sont arrêtées au bout de 4 h, temps au-delà duquel, la décomposition secondaire des produits formés devient non négligeable.

 $Ph_2Ge(SMe)_2$ [13], $PhClGe(SMe)_2$, $Et_2Ge(SMe)_2$ [14], $Ph_2ClGeGeClPh_2$, $PhCl_2GeGeCl_2Ph$ [6], $Ph_3GeGeClPh_2$ [15], $Et_2ClGe(Et_2Ge)_nGeClEt_2$ (n = 0,1) [8,15].

Synthèse de Ph₃GeGeH₂Ph. Dans un ballon de 250 cm³, sont introduits, sous agitation magnétique et à -40° C, PhClGeH₂ (4.12 g, 22 mmol) dans 25 cm³ de pentane puis lentement Ph₃GeLi (22 mmol) (préparé par action de BuLi (22 mmol) en solution dans l'hexane sur Ph₃GeH (4.70 g, 22 mmol) dans 25 cm³ d'éther). Le mélange est ramené à température ambiante puis abandonné 24 h à 20°C sous agitation magnétique. Après hydrolyse, extraction à l'éther, séchage sur CaCl₂ et concentration sous pression réduite, le résidu est repris par 10 cm³ d'éther et laisse précipiter une poudre blanche. Après filtration et lavage au pentane 0.53 g de Ph₃Ge(GeHPh)GePh₃ sont isolés (dû à des traces de PhCl₂GeH dans le chlorohydrogermane de départ): Ph₃Ge(GeHPh)GePh₃, PF 146°C RMN: δ (GeH) 5.27 (s) ppm (C₆D₆). IR: ν (GeH) 1978 cm⁻¹ (Nujol). Analyse. Trouvé: C, 66.21; H, 4.70. C₄₂H₃₆Ge₃ calc.: C, 66.63; H, 4.75%.

Le phase éthérée est concentrée sous pression réduite. L'analyse par CPV et RMN du résidu ainsi obtenu montre la présence de Ph₃GeH et de Ph₃GeGeH₂Ph en proportions sensiblement égales. Après redissolution dans un minimum d'éther (3 cm³) et adjonction de quantité croissante de méthanol (16 cm³), la solution est refroidie 12 h à -30° C et laisse décanter une huile visqueuse enrichie en Ph₃GeGeH₂Ph. Par cette méthode, un mélange de Ph₃GeGeH₂Ph (70%) et de Ph₃GeH (30%) a pu être obtenu. Ph₃GeGeH₂Ph: RMN: δ (GeH₂) 4.80 (s) ppm (C₆D₆). IR: ν (GeH) 2020 cm⁻¹. Chloration de Ph₃GeGeH₂Ph. Dans un tube de Schlenk, est introduit le mélange précédent puis lentement 4 cm³ de CCl₄. La chloration de Ph₃GeGeH₂Ph est exothermique. Le mélange réactionnel est abandonné 4 h à température ambiante sous agitation magnétique, puis concentré sous pression réduite. Après recristallisations successives (C₆H₆/Et₂O), 0.38 g de poudre blanche contenant des traces de Ph₃GeH sont isolés. Ph₃GeGeCl₂Ph. PF 206-210°C. Analyse. Trouvé: C, 55.75; H, 4.13; Cl, 12.87. C₂₄H₂₀Cl₂Ge₂ calc.: C, 54.97; H, 3.81; Cl, 13.52%.

Chloration de $Ph_3Ge(GeHPh)GePh_3$. A 0.40 g (0.5 mmol) de $Ph_{43}Ge(GeH-Ph)GePh_3$, sont ajoutés 6 cm³ de CCl₄. Le mélange est chauffé 1 h à 65-70°C puis concentré sous pression réduite: 0.32 g (Rdt. 80%) de $Ph_3Ge(GeClPh)GePh_3$ sont ainsi obtenus. PF 228°C. Analyse. Trouvé: C, 62.90; H, 4.27. $C_{42}H_{35}ClGe_3$ calc.: C, 63.64; H, 4.42%.

Préparation de Ph₃Ge(Ph)GeCH₂CCH₃CCH₃CH₂. A Ph(Cl)GeCH₂CCH₃-CCH₃CH₂ [1] (1.00 g, 3.74 mmol) dans 5 cm³ d'éther, est ajoutée une solution de Ph₃GeLi (3.74 mmol) dans 5 cm³ d'éther (cf. précédemment). La réaction est suivie en CPV. Après 4 h à température ambiante, le mélange réactionnel est hydrolysé (HCl 10%), extrait à l'éther, séché sur CaCl₂ et concentré sous pression réduite. Le résidu est alors repris par 5 cm³ de pentane et filtré. La phase pentanique est concentrée sous pression réduite et laisse précipiter très lentement des cristaux incolores: 0.25 g (Rdt. 13%) Ph₃(Ph)GeCH₂CCH₃CCH₃CH₂ PF 80-85°C. RMN: δ (CH₃) 1.66 (s,1) ppm, δ (CH₂) 2.15 (s,1) ppm, δ (C₆H₅) 7.00-7.80 (m) ppm (C₆D₆). Analyse. Trouvé: C, 66.97; H, 5.56. C₃₀H₃₀Ge₂ calc.: C, 67.29; H, 5.60%.

*Préparation de Ph*₃*GeGe*(*SMe*)*Et*₂. A une solution de Ph₃GeLi (20 mmol) dans 25 cm³ de THF (cf. précédemment), est ajouté Et₂GeHCl (3.34 g, 20 mmol). La réaction est très légèrement exothermique. Le mélange réactionnel est abandonné 12 h à température ambiante sous agitation magnétique, puis hydrolysé, extrait à l'éther et séché sur Na₂SO₄. Après concentration des solvants, la distillation du résidu conduit à 4.70 g (Rdt. 54%) de Ph₃GeGe(H)Et₂ Eb. 158–160°C/5 × 10⁻² mmHg. PF 40–41°C, RMN: $\delta(C_2H_5)$ 1.07 (s,1) ppm, $\delta(GeH)$ 4.30 (m) ppm, $\delta(C_6H_5)$ 7.10–7.70 (m) ppm (C₆D₆). IR: ν(GeH) 1.994 cm⁻¹ (Nujol).

Ph₃GeGe(H)Et₂ (1.00 g, 8.3 mmol) et 1 cm³ de CH₃SSCH₃ sont chauffés 12 h à 100°C en tube scellé en présence d'AIBN. Après élimination du CH₃SSCH₃ en excès sous pression réduite, les cristaux blancs ainsi obtenus sont lavés 2 fois au pentane: 0.40 g (Rdt. 36%) de Ph₃Ge-Ge(SMe)Et₂. PF 89-90°C. RMN: $\delta(C_2H_5)$ 1.10 (m) ppm, $\delta(SMe)$ 1.76 (s) ppm, $\delta(C_6H_5)$ 7.00-7.80 (m) ppm (C_6D_6). Analyse. Trouvé: C, 57.05; H, 5.68; S, 6.17. $C_{23}H_{28}SGe_2$ calc.: C, 57.38; H, 5.82; S, 6.65%.

Préparation de Ph₃GeGe(SMe)Ph₂. Dans les mêmes conditions opératoires Ph₃GeGe(H)Ph₂ [15] (0.16 g, 0.3 mmol), 0.5 cm³ de CH₃SSCH₃ et une quantité catalytique d'AIBN conduisent à la formation de 0.07 g (Rdt. 42%) de Ph₃GeGe(SMe)Ph₂. PF 157-158°C. RMN: δ (SMe) 1.77 (s) ppm (C₆D₆). Analyse. Trouvé: C, 64.18; H, 4.58; S, 5.37. C₃₁H₂₈SGe₂ calc.: C, 64.47; H, 4.85; S, 5.54%.

Action de Ph_2Ge , NEt_3 sur CH_3SSCH_3 . A Ph_2Ge , NEt_3 (1.3 mmol préparé par action de Et_3N sur Ph_2GeHCl [10,14]) en solution dans 1 cm³ de C_6H_6 , sont ajoutés 0.5 cm³ de CH_3SSCH_3 . Le mélange est chauffé 4 h à 120°C en tube scellé. L'analyse par RMN et CPV montre la formation de 76% de $Ph_2Ge(SMe)_2$. Aucune trace de digermane (Ph_2MeSGe)₂ n'a pu être décelée.

Action de Et_2Ge,NEt_3 sur $Et_2Ge(SMe)_2$. A Et_2Ge,NEt_3 (1.8 mmol, préparé par action de Et_3N sur Et_2ClGeH [10,14]) est ajouté $Et_2Ge(SMe)_2$ (0.4 g, 1.8 mmol). La

moitié du mélange obtenu est chauffé à 100° C 2 h sans aucune transformation de Et₂Ge(SMe)₂. La seconde partie irradiée sons UV (de 1 à 9 h) ne montre aucune trace de formation de (Et₂MeSGe)₂ (CPV, RMN).

Action de CH_3SSCH_3 sur R_3GeGeR_3 (R = Et, Ph). Une solution de digermane (1 mmol) et de CH_3SSCH_3 (2 mmol) dans 0.5 cm³ de C_6D_6 est chauffée 15 h à 100°C en présence d'AIBN en tube scellé. Le digermane est retrouvé inchangé dans les deux cas.

Action de CH₃S. sur Ph₃GeGePh₃. Une solution de PhGeH₃ (0.31 g, 2 mmol), CH₃SSCH₃ (0.75 g, 8 mmol) et de Ph₃GeGePh₃ (1.21 g, 2 mmol) dans 5 cm³ de C₆H₆ est chauffée 15 h à 100°C en présence d'AIBN en tube scellé. On note la formation quasi quantitative de PhGe(SMe)₃ mais aucune trace de Ph₃GeSMe n'est détectée: Ph₃GeGePh₃ reste inchangé.

Préparation de Et₂MeSGeGeSMeEt₂. Et₂ClGeGeClEt₂ (1.02 g, 3 mmol) et Et₃N (0.70 g, 7 mmol) sont dissous dans 5 cm³ de C₆H₆. CH₃SH en excès est ajouté (barbotage) à cette solution. Il y a précipitation de chlorhydrate Et₃N,HCl éliminé par filtration. La concentration, puis la distillation du filtrat obtenu conduit à 0.95 g (Rdt. 89%) de (Et₂MeSGe)₂. Eb. 103°C/0.45 mmHg. n_D^{20} 1.5635. RMN: δ (SMe) 1.86 (s) ppm (C₆H₆). Analyse. Trouvé: C, 33.72; H, 7.18; S, 17.87. C₁₀H₂₆S₂Ge₂ calc.: C, 33.80; H, 7.32; S, 18.01%.

*Préparation de Ph*₂*MeSGeGeSMePh*₂. Ph₂ClGeGeClPh₂ (1.72 g, 3.3 mmol), Et₃N (0.75 g, 7.4 mmol) et CH₃SH en excès conduisent suivant le même procédé, après filtration, concentration du solvant et précipitation au pentane à 1.68 g (Rdt. 93%) de Ph₂MeSGeGeSMePh₂. PF 145°C. NMR: δ (SMe) 1.87 (s) ppm (C₆D₆). Analyse. Trouvé: C, 56.31; H. 4.64; S, 12.07. C₂₆H₂₆S₂Ge₂ calc.: C, 57.04; H, 4.75; S, 11.69%.

Réactions d'a-élimination monoélectronique

Action de t-BuO⁻ sur Et₂HGeGeClEt₂. Une solution de Et₂HGeGeClEt₂ (0.16 g, 0.54 mmol) et de t-Bu₂O₂ (0.16 g, 1.1 mmol, excès) dans 0.5 cm³ de C₆H₆ est irradiée par séquences de 15 min. La réaction est suivie par CPV. On note la disparition progressive du chlorohydrodigermane de départ (30 min, 17% résiduel; 1 h, 0%) et la formation simultanée de t-BuOH. L'analyse par CPV du mélange réactionnel montre la formation de: Et₂ClGeH (5-6%), Et₂ClGeGeClEt₂ (49%), (Et₂ClGe)₂GeEt₂ (8%), (Et₂ClGeEt₂Ge)₂ (20%) (t 30 min); et Et₂ClGeGeClEt₂ (50%), (Et₂ClGeEt₂(30%), (Et₂ClGeEt₂Ge)₂ (18%), (Et₂Ge)₄ (~ 2%) (t 1 h).

Une irradiation similaire de $\text{Et}_2\text{HGeGeClEt}_2$ en l'absence de t-Bu₂O₂ ne produit qu'une faible décomposition de ce produit ($\leq 10\%$) par α -élimination photochimique conduisant à la formation de Et₂GeHCl (8%) et de Et₂HGe(GeEt₂)GeClEt₂ et (Et₂Ge)₄ en faibles quantités.

Action de t-BuO' sur $Et_2HGe(GeEt_2)GeClEt_2$. Dans les mêmes conditions opératoires, l'irradiation d'une solution de $Et_2HGe(GeEt_2)GeClEt_2$ (0.22 g, 0.5 mmol) et de t-Bu₂O₂ (0.16 g, 1.1 mmol) dans 0.5 cm³ de C₆H₆ conduit, après 1 h, à la disparition totale du produit de départ et à la formation de: $Et_2ClGeGeClEt_2$ (4%), $Et_2ClGe(GeEt_2)GeClEt_2$ (65%), $(Et_2Ge)_4$ (8%), $(Et_2ClGeEt_2Ge)_2$ (17%), $(Et_2Ge)_5$ (6%) et $(Et_2Ge)_6$ (traces).

L'irradiation similaire de ce trigermane en l'absence de t-Bu₂O₂ conduit à 18% de décomposition par α -élimination photochimique prépondérante et formation de Et₂GeHCl (3%), Et₂HGeGeClEt₂ (12%) et (Et₂Ge)₄ (1-2%).

Action de t-BuO' sur $Et_3Ge-GeHEt_2$. Dans les mêmes conditions opératoires, l'irradiation d'une solution de $Et_3GeGeHEt_2$ (0.06 g, 0.2 mmol) et de t-Bu₂O₂ (0.06 g, 0.4 mmol, excès) dans 0.5 cm³ de C₆H₆ conduit après 1 h d'irradiation (87% de réaction) à la formation de: (Et₃Ge)₂O (11%), Et₃GeGeEt₃ (34%) [8], (Et₂Ge)₄ (3%), Et₃Ge(GeEt₂)₂GeEt₃ (26%) [8].

Une irradiation de ce digermane (2 h) en l'absence de t- Bu_2O_2 ne provoque aucune modification notable.

Préparation de Et₃GeGeHEt₂. L'éthylation de Et₂ClGeGeHEt₂ (1.13 g, 3.8 mmol) par un excès de EtMgBr dans l'éther (6 mmol) conduit après 6 h de reflux, hydrolyse, extraction à l'éther, concentration et distillation à 0.53 g (Rdt. 48%) de Et₃GeGeHEt₂. Eb. 110°C/15 mmHg. n_D^{20} 1.4932. RMN: δ (GeH) 3.87 (m) ppm, δ (C₂H₅) 1.07 (m) ppm (C₆H₆). IR: ν (GeH) 1975 cm⁻¹.

*Préparation de Et*₂*HGeGeClEt*₂. A Et₂HGeGeHEt₂ (2.6 g, 10 mmol) [16] en solution dans 5 cm³ de C₆H₆, est ajouté lentement CCl₄ (1.50 g, 10 mmol) sous agitation magnétique. La réaction a lieu à température ambiante et est suivie par CPV. Après 20 h à 20°C, on note la formation de: Et₂HGeGeClEt₂ (85%), de Et₂ClGeGeClEt₂ (~5%) et de Et₂GeCl₂ (3%). La chloration est alors arrêtée par évaporation sous vide du CCl₄ résiduel et du CHCl₃ formé. L'hydrochlorodigermane, ainsi obtenu, est utilisé brut. Et₂HGeGeClEt₂ (Rdt. 85%). RMN: δ(GeH) 3.96 (m) ppm, $\delta(C_2H_5)$ 1.15 (s,1) ppm (C₆H₆). IR: ν(GeH) 2000 cm⁻¹.

*Préparation de Et*₂*HGe*(*GeEt*₂)*GeClEt*₂. Dans les mêmes conditions opératoires, Et₂HGe(GeEt₂)GeHEt₂ (1.00 g, 3.3 mmol) [16] et CH₂Cl₂ (0.28 g, 3.3 mmol) conduisent à la formation de 73% de Et₂HGe(GeEt₂)GeClEt₂, de 6% de Et₂ClGe(GeEt₂)GeClEt₂ et de traces de Et₂HGeGeClEt₂ Et₂HGe(GeEt₂)GeClEt₂. RMN: δ (GeH) 3.93 (m) ppm, δ (C₂H₅) 1.16 (m) ppm (C₆H₆). IR: ν(GeH) 1990 cm⁻¹.

Photolyse d'organodigermylmercures

Action du CH₃SSCH₃ sur $[Ph_2GeGePh_2Hg]_n$. Au tétraphényldigermylmercure préparé selon ref. 6 (0.5 mmol) dans 5 cm³ de C₆H₆, est ajouté le diméthyldisulfure (0.10 g, 1 mmol). Après 1 h à température ambiante, on ne note aucune réaction. Le mélange est alors irradié (UV) 1 h. On note la formation de mercure, de Ph₂Ge(SMe)₂ (traces) de Ph₂MeSGeGeSMePh₂ (Rdt. 52%) (dosage CPV-RMN) et de polymères (Ph₂Ge)_n.

Action de CH_3SSCH_3 sur $[Et_2GeGeEt_2Hg]_n$. Dans les mêmes conditions, le tétraéthyldigermylmercure [6,11] (0.5 mmol) (préparé à partir de $Et_2HGeGeHEt_2$ (0.23 g, 0.5 mmol) et de Bu_2Hg (0.32 g, 1 mmol) dans 1 cm³ de C_6H_6) traité par CH₃SSCH₃ (0.10 g, 1 mmol) ne donne aucune réaction à température ambiante et conduit, après 1 h d'irradiation UV, à la formation de mercure, $Et_2MeSGe-GeSMeEt_2$ (Rdt. 47%) (dosage CPV et RMN) et de polymères ($Et_2Ge)_n$.

Action du DMB sur $[Ph_2GeGePh_2Hg]_n$. Dans l'action du DMB sur ce digermylmercure, il n'a pas été possible d'isoler le tétraphényl-1,1,2,2 digerma-1,2 cyclohexène [6]. Par contre, l'analyse du mélange réactionnel par spectrographie de masse, montre la présence du pic de masse $M^+ m/e = 536$ caractéristique de ce dérivé mais dont la quantité présente dans le milieu n'a pu être déterminée.

Préparation de $Ph_2GeCH_2CCH_3CCH_3CH_2GePh_2$. Dans un tube de Schlenk, sont introduits lithium (0.16 g, 23 mmol), 50 cm³ d'éther, $Ph_2ClGeGeClPh_2$ (5.15 g, 10 mmol) et diméthylbutadiène (1.64 g, 20 mmol). On ajoute ensuite 5 cm³ de THF. Le

mélange est abandonné 12 h à 20°C sous agitation magnétique. Après élimination du LiCl formé (cf. ci-dessus), concentration des solvants sous pression réduite, 3.85 g de poudre blanche sont isolés. Par recristallisation (C_6H_6 /pentane) a pu être obtenue une fraction (PF 61-63°C) enrichie en digermacyclohexène: Ph₂GeCH₂CCH₃CCH₃CH₂GePh₂ (65%), (Ph₂Ge)_n (35%) (dosage par RMN). RMN: δ (CH₃) 1.80 (s.1) ppm, δ (CH₂), 2.30 (s.1) ppm (C_6D_6). M + m/e = 536, [Ph₂Ge]₂ + m/e = 454, [Ph₂Ge] + m/e = 228, [PhGe] + m/e = 151

Il n'a pas été possible d'obtenir le digermacyclohexène parfaitement pur. Ce dernier dérivé peu stable se décompose partiellement lors des recristallisations successives.

Préparation de $(Et_2Ge)_n$ (n = 4, 5, 6). Le diéthyldichlorogermane (10.03 g, 49.6 mmol) en solution dans 20 cm³ d'éther anhydre et dégazé est ajouté à 0°C à un amalgame Li/Hg (Li; 0.87 g, 124 mmol) (Hg: 5 cm³). Le mélange réactionnel est réchauffé au bain-marie jusqu'au reflux du solvant maintenu pendant 10 h. La solution surnageante jaune obtenue est alors prélevée, concentrée puis distillée une première fois sous 5×10^{-2} mmHg. On note la formation de Hg (destruction thermique de germylmercures formés partiellement au cours de la réaction). Le mélange d'éthylcyclopolygermanes obtenu 5.68 g, (Rdt. 87%) est fractionné sous pression partielle. (Et₂Ge)₄: 2.02 g (39%). Eb. 118°C/4 × 10⁻² mmHg. UV: λ_{max} 212 nm, ϵ 6100 276 nm (sh), 284 nm (sh). $M^+ m/e = 524$

(Et₂Ge)₅: 2.33 g (45%). Eb. 160°C/4 × 10⁻² mmHg. UV λ_{max} 210 nm, ϵ 10300 276 nm (sh), 282 nm (sh). $M^+ m/e = 654$

(Et₂Ge)₆: 0.26 g (5%). Eb. 196°C/4×10⁻² mmHg. RMN: $\delta(C_2H_5)$ 1.23 ppm (s) (C₆H₆). $M^+ m/e = 784$

Lorsque le THF (anhydre et dégazé) est utilisé comme solvant, la formation de divers oxydes germaniés $[(Et_2Ge)_xO_y]_n$ est toujours observée.

Photolyse des éthylcyclopolygermanes. La photolyse de $(Et_2Ge)_4$ (0.10 g) dans le benzène (0.5 cm³) montre l'ouverture du cyclotétragermane et sa conversion en mélange $(Et_2Ge)_n$ (n = 4, 5, 6). Après 6 h d'irradiation sont obtenus: $(Et_2Ge)_4$ (74%), $(Et_2Ge)_5$ (15%) et $(Et_2Ge)_6$ (11%). Ces cyclopolygermanes ont donc été photolysés dans les mêmes conditions en présence de divers réactifs. Les résultats obtenus sont consignés dans le Tableau 3.

(Et ₂ Ge) _n	Réactifs	Durée (h)	% "	Produits identifiés (%)
<i>n</i> = 4	CH₃SSCH₃	1	76	$Et_2Ge(SMe)_2$ (33), $(Et_2MeSGe)_2$ (28), ($Et_2MeSGe)_2GeEt_2$ (26), ($Et_2MeSGe)_2(GeEt_2)_2$ (13)
<i>n</i> = 5	CH,SSCH,	6	56	$Et_2Ge(SMe)_2$ (55), (Et_2MeSGe) ₂ (32), (Et_2MeSGe) ₂ Ge Et_2 (13), (Et_2MeSGe) ₂ (Ge Et_2) ₂ (traces)
<i>n</i> = 4	DMB	б	53	Et ₂ GeCH ₂ CCH ₃ CCH ₃ CH ₂ (6), (Et ₂ GeO) ₃ (11), (Et ₂ Ge) ₅ (9), (Et ₂ Ge) ₆ (5) et polymères

PHOTOLYSE D	E CYCLOPOI	LYGERMANES	(Et ₂ Ge)_

TABEAU 3

^a % de décomposition du polygermane initial.

Dans le but d'apprécier l'erreur sur les pourcentages en produits formés (Tableau 3) une évaluation du taux de décomposition photoinduite des polygermanes $(Et_2GeSMe)_2(GeEt_2)_n$ en présence de diméthyldisulfure a été calculée. Après 3 h d'irradiation, le taux de décomposition de $(Et_2GeSMe)_2GeEt_2$ reste faible (8%) et conduit à la formation de $Et_2Ge(SMe)_2$ (4%) et $(Et_2GeSMe)_2$ (4%).

Préparation de $Et_2GeSMe(GeEt_2)_nGeSMeEt_2$ (n = l et 2). Au trigermane Et₂HGeGeEt₂GeHEt₂ [16] (1.5 g, 3.8 mmol) est ajouté un excès de CH₃SSCH₃ (0.75 g, 8 mmol) et le mélange chauffé en tube scellé 2 h 30 min à 100°C en présence de AIBN. La CPV du mélange réactionnel montre la formation de Et₂Ge(SMe)₂ (11%), (Et₂GeSMe)₂ (18%) et Et₂Ge(GeSMeEt₂)₂ (71%) séparés par distillation 0.67 g (Rdt. 35%).

(Et₂SMeGe)₂GeEt₂. Eb: 157/0.5 mmHg. n_D^{20} 1.5996. RMN: δ (SMe) 1.93 (s) ppm (C₆H₆) Suivant la même procédure, un échantillon brut de (Et₂SMeGe)₂(GeEt₂)₂ a été obtenu à partir de l'hydrotétragermane correspondant [16]. Il n'a pas été purifié par distillation: RMN: δ (SMe) 1.87 (s) ppm (pureté ~ 75%).

Bibliographie

- 1 J. Satgé, M. Massol et P. Rivière, J. Organomet. Chem., 56 (1973) 1.
- 2 P. Rivière, M. Rivière-Baudet et J. Satgé, Germanium in Comprehensive Organometallic Chemistry, Vol. 2, part 10, Pergamon Press, 1982.
- 3 M.F. Lappert, A.R. Sanger, P.P. Power et R.C. Srivastava, Metal and Metalloïd Amides, Wiley, Chichester, 1980.
- 4 R. West, M.J. Fink et J. Michl, Science, 214 (1981) 1343 et ref. citées.
- 5 J. Satgé, Adv. Organomet. Chem., 21 (1982) 241.
- 6 P. Rivière, A. Castel et J. Satgé, J. Organomet. Chem., 212 (1981) 351.
- 7 S. Masamune et Y. Hanzawa, J. Amer. Chem. Soc., 104 (1982) 6136.
- 8 E.J. Bulten, Thèse Univ. d'Utrecht, 1969.
- 9 P. Rivière, S. Richelme, M. Rivière-Baudet, J. Satgé, M.J.S. Gynane et M.F. Lappert, J. Chem. Res. (S), (1978) 218; (M) 2801.
- 10 P. Rivière, A. Castel et J. Satgé, J. Organomet. Chem., 232 (1982) 123.
- 11 P. Mazerolles, M. Joanny et G. Tourrou, J. Organomet. Chem., 60 (1973) C3.
- 12 G.A. Razuvaev et M.N. Bochkarev, J. Organomet. Chem. Libr., 12 (1981) 241.
- 13 M. Lesbre, P. Mazerolles et J. Satgé, The Organic Compounds of Germanium, Wiley-Interscience, New-York, 1971.
- 14 P. Rivière, J. Satgé et A. Castel C.R. Acad Sci. Paris, Sér. C, 281 (1975) 835.
- 15 A. Castel, P. Rivière, B. Saint-Roch, J. Satgé et J.P. Malrieu, J. Organomet. Chem., 247 (1983) 149.
- 16 A. Marchand, P. Gerval, P. Rivière et J. Satgé, J. Organomet. Chem., 162 (1978) 365.